3.441 \(\int (a+b \sec ^2(e+f x))^p (d \tan (e+f x))^m \, dx\)

Optimal. Leaf size=105 \[ \frac {(d \tan (e+f x))^{m+1} \left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^{-p} F_1\left (\frac {m+1}{2};1,-p;\frac {m+3}{2};-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a+b}\right )}{d f (m+1)} \]

[Out]

AppellF1(1/2+1/2*m,1,-p,3/2+1/2*m,-tan(f*x+e)^2,-b*tan(f*x+e)^2/(a+b))*(d*tan(f*x+e))^(1+m)*(a+b+b*tan(f*x+e)^
2)^p/d/f/(1+m)/((1+b*tan(f*x+e)^2/(a+b))^p)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {4141, 1975, 511, 510} \[ \frac {(d \tan (e+f x))^{m+1} \left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^{-p} F_1\left (\frac {m+1}{2};1,-p;\frac {m+3}{2};-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a+b}\right )}{d f (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^p*(d*Tan[e + f*x])^m,x]

[Out]

(AppellF1[(1 + m)/2, 1, -p, (3 + m)/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))]*(d*Tan[e + f*x])^(1 + m
)*(a + b + b*Tan[e + f*x]^2)^p)/(d*f*(1 + m)*(1 + (b*Tan[e + f*x]^2)/(a + b))^p)

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rubi steps

\begin {align*} \int \left (a+b \sec ^2(e+f x)\right )^p (d \tan (e+f x))^m \, dx &=\frac {\operatorname {Subst}\left (\int \frac {(d x)^m \left (a+b \left (1+x^2\right )\right )^p}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {(d x)^m \left (a+b+b x^2\right )^p}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\left (\left (a+b+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a+b}\right )^{-p}\right ) \operatorname {Subst}\left (\int \frac {(d x)^m \left (1+\frac {b x^2}{a+b}\right )^p}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {F_1\left (\frac {1+m}{2};1,-p;\frac {3+m}{2};-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a+b}\right ) (d \tan (e+f x))^{1+m} \left (a+b+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a+b}\right )^{-p}}{d f (1+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 3.49, size = 259, normalized size = 2.47 \[ \frac {\sin (e+f x) \cos (e+f x) (d \tan (e+f x))^m \left (a+b \sec ^2(e+f x)\right )^p F_1\left (\frac {m+1}{2};-p,1;\frac {m+3}{2};-\frac {b \tan ^2(e+f x)}{a+b},-\tan ^2(e+f x)\right )}{f (m+1) \left (\frac {2 \tan ^2(e+f x) \left (b p F_1\left (\frac {m+3}{2};1-p,1;\frac {m+5}{2};-\frac {b \tan ^2(e+f x)}{a+b},-\tan ^2(e+f x)\right )-(a+b) F_1\left (\frac {m+3}{2};-p,2;\frac {m+5}{2};-\frac {b \tan ^2(e+f x)}{a+b},-\tan ^2(e+f x)\right )\right )}{(m+3) (a+b)}+F_1\left (\frac {m+1}{2};-p,1;\frac {m+3}{2};-\frac {b \tan ^2(e+f x)}{a+b},-\tan ^2(e+f x)\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^p*(d*Tan[e + f*x])^m,x]

[Out]

(AppellF1[(1 + m)/2, -p, 1, (3 + m)/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2]*Cos[e + f*x]*(a + b*Sec
[e + f*x]^2)^p*Sin[e + f*x]*(d*Tan[e + f*x])^m)/(f*(1 + m)*(AppellF1[(1 + m)/2, -p, 1, (3 + m)/2, -((b*Tan[e +
 f*x]^2)/(a + b)), -Tan[e + f*x]^2] + (2*(b*p*AppellF1[(3 + m)/2, 1 - p, 1, (5 + m)/2, -((b*Tan[e + f*x]^2)/(a
 + b)), -Tan[e + f*x]^2] - (a + b)*AppellF1[(3 + m)/2, -p, 2, (5 + m)/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e
 + f*x]^2])*Tan[e + f*x]^2)/((a + b)*(3 + m))))

________________________________________________________________________________________

fricas [F]  time = 0.98, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \left (d \tan \left (f x + e\right )\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^p*(d*tan(f*x+e))^m,x, algorithm="fricas")

[Out]

integral((b*sec(f*x + e)^2 + a)^p*(d*tan(f*x + e))^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \left (d \tan \left (f x + e\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^p*(d*tan(f*x+e))^m,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*(d*tan(f*x + e))^m, x)

________________________________________________________________________________________

maple [F]  time = 2.89, size = 0, normalized size = 0.00 \[ \int \left (a +b \left (\sec ^{2}\left (f x +e \right )\right )\right )^{p} \left (d \tan \left (f x +e \right )\right )^{m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(f*x+e)^2)^p*(d*tan(f*x+e))^m,x)

[Out]

int((a+b*sec(f*x+e)^2)^p*(d*tan(f*x+e))^m,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \left (d \tan \left (f x + e\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^p*(d*tan(f*x+e))^m,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*(d*tan(f*x + e))^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^m\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*tan(e + f*x))^m*(a + b/cos(e + f*x)^2)^p,x)

[Out]

int((d*tan(e + f*x))^m*(a + b/cos(e + f*x)^2)^p, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)**2)**p*(d*tan(f*x+e))**m,x)

[Out]

Timed out

________________________________________________________________________________________